RESEARCH REPORT SERIES
(Statistics #2002-03)

Working Papersfor Mixture Model Additive
Noisefor Microdata Masking

William E. Y ancey

Statistical Research Division
U.S. Bureau of the Census
Washington D.C. 20233

Report Issued: May 28, 2002

Disclaimer: Thispaper reportstheresultsof research and analysisundertaken by Census Bureau staff. It hasundergone
a Census Bureau review more limited in scope than that given to official Census Bureau publications. This paper is
released to inform interested parties of ongoing research and to encourage discussion of work in progress.

Abstract

We consider some aspects of using an additive mixture noise model for
real microdata masking as a generalization of using normally distributed
masking noise introduced by Roque [Roque]. We introduce a simplified pro-
cedure for computing additive mixture noise and consider the effectiveness
of this approach from the point of view of information loss measures and
record re-identification. We concentrate on the information loss statistics for
the variance/covariance matrix of the full data set and of arbitrary subsets.
We consider some of the information loss statistics introduced by Domingo-
Ferrer [Domingo-Ferrer| and we introduce some analytic alternatives. We
see that for the full data sets, the analytic properties are well preserved and
the data masking is effective. The analytic properties are less well preserved
on subsets of this highly skewed data. We include some SAS programs used
in the study.

Key words: microdata masking, information loss statistics, record linkage
re-identification

Working Papers for Mixture Model Additive
Noise for Microdata Masking

William E. Yancey
Statistical Research Division
Bureau of the Census
william.e.yancey@census.gov

May 28, 2002

Contents

1

3

Introduction 3
1.1 Additive Mixture Noise Masking 4
1.1.1 Additive Noise Masking 4
1.1.2 Mixture Noise 6
A Factored Approach to Computing Mixture-Model Noise 10

2.1 Problem Standardization 10
2.2 Computational Approach 12
Jay Kim’s Method for Computing Subpopulation Estimates
from Masked Data 15
3.1 Masked Data and Scaled Masked Data 15
3.2 Statistics for Subpopulations of Masked Data 16
3.3 Statistics for Subpopulations of Scaled Masked Data 17
3.4 Revised Computation of Subpopulation Estimates from Masked
Data 18
3.4.1 Masked Data and Scaled Masked Data 18
3.4.2 Statistics for Subpopulations of Masked Data 22
3.4.3 Statistics for Subpopulations of Scaled Masked Data . 23
Note on Additive Mixture Noise Data Masking 26
4.1 Introduction 26
4.1.1 Information Loss Scores 26
4.1.2 Additive Mixture Noise 29
4.2 Domingo Data Statistics 30
4.3 Kim-Winkler Data Statistics 32
4.3.1 Subpopulation Information Loss Statistics 34
4.4 Summary Mixture Noise Statistics 35

5 Second Order Information Loss Measures 39

5.1 Information Loss Measures 39
5.2 Eigenvalue Results 41
5.3 Conclusions 43
6 Some Possible Modifications and Extensions for Additive
Mixture Noise Application for Data Masking 44
6.1 Improving Noise Statistics 44
6.1.1 Empirical Results 0L, 47
6.2 Data Probability Distributions 50
A SAS Programs 54
A.1 SAS Program to Create and Evaluate Mixture Noise Masked
Data o4
A.2 SAS Program to Evaluate Subpopulation Statistics for Mix-
ture Model Masked Microdata 71

Chapter 1

Introduction

We collect here some of our notes involving the study of mixture models to
produce additive noise for masking microdata. We consider our microdata
set to be an array X of real numbers, containing n rows of individual records
and m columns of variables. A masked microdata set Z is an n x m array
obtained by transforming X,

f:X—Z

so that ideally the masked data set Z preserves the analytic validity of X
while being safe from disclosure. Unfortunately these are not only conflicting
goals, they are not even well defined. By analytic validity, we might ideally
hope that an analyst would obtain statistically equivalent results from ana-
lyzing Z that he or she would from analyzing X. However, since there is no
predicting what sort of analytic procedures the data might be subjected to,
one cannot devise a test for the masked data Z to see whether it will always
perform comparably to X. By disclosure security, we mean ideally that an
analyst cannot use the data in Z to identify the individuals who supplied the
data records in X. However, we cannot anticipate what possible knowledge
or methodology a future analyst might bring to bear on Z to attempt to
re-identify individuals from X.

Since there is not a definitive answer to what is meant by analytic va-
lidity, as a basic requirement, we concentrate on testing to see whether first
and second order statistics (sample means and covariances) are preserved.
Again we need to define in a quantitative way what we mean by preserving
means and covariances. To this end we have used and adapted some of the
information loss measures proposed by Domingo-Ferrer.

3

To try to evaluate disclosure security, we can only apply a re-identification
method and see how we do. We have used probabalistic record linkage
software derived from the Fellegi-Sunter model to try to match the set of
records in Z with the set of records in X to see what proportion of records can
be reliably re-identified ([Winkler94],[Winkler95],[Winkler98]). We believe
that this is a pretty stringent test for disclosure security since for methodology
it uses sophisticated record linkage software developed at the Census Bureau
and for knowledge it uses the complete data set X from which the masked
data set Z was derived.

The empirical results of these tests applied to additive mixture model
masking are discussed in Chapter 4. A comparison of these empirical results
with those from other data masking methods are given in [Yancey].

1.1 Additive Mixture Noise Masking

1.1.1 Additive Noise Masking

The idea of additive noise masking was explored by Jay Kim [Kim86]. If we
think of our data X as being n independent samples of a random vector x
with mean p and covariance ¥, then we can use a (normal) random vector
y with mean 0 and covariance ¥ to additively produce a masked random
variable z, where

Z=x+\/gy

for a scalar d. The resulting random vector z has mean p and covariance
(1+d)X. If we prefer to have a masked random variable with the same
covariance as x, we can always rescale to get
E-p
Zs = +
s T 2

1
= z4+|1-
Jitd (M1+d)”
so that z; has mean p and covariance X, the same as x. Thus by taking n

independent samples of the random vector y, we can generate a masked data
set

g

7 =X +Vdy

where the masked data Z theoretically has the same mean and proportional
covariance to the raw data X. Since we are taking samples, we can only

4

compute the sample mean and sample covariance, but for reasonably large
samples we expect fairly close agreement.

In order to generate the random noise vector, we can use a random number
function that generates independent sample of a standard normal random
variable. Thus we can get a random vector ¢ that has mean 0 and covariance
I. 1In order to get the appropriate covariance for y, we can multiply by a
square root of the covariance, that is a matrix ¥3 with the property that

1 1 T
% (za) =3
Then the random variable)
Yy = o
also has mean 0 and covariance given by

Efyy"] = D2E[e] (E%)T

1
2

~
/N
g
Nl=
N——
!

Such square root matrices exist for positive definite covariance matrices .
One way to compute one is via the Cholesky decomposition algorithm which
produces a square root Y3 in lower triangular form. Another way is to
compute the eigenvalues and eigenvectors of ¥, so that one has

> =UDU"

where D is a diagonal matrix of eigenvalues of ¥ and U is an orthogonal
matrix of eigenvectors of 3. Since ¥ is positive definite, all of the eigenvectors
are positive, so we may also compute a square root as

Y5 = UD3

where D2 is the diagonal matrix of the square roots of the eigenvalues of X.

The virtue of this data masking method is that means and covariances
can be preserved. Moreover, as shown by Jay Kim, means and covariances
are theoretically preserved on arbitrary subpopulations [Kim90]. Thus this
method should rate pretty well for preserving analytic validity. However, a
shortcoming of the method, is that since the masking terms are generated

from a normal random variable of 0 mean, most of the samples generated
tend to be near 0, and thus the corresponding masked values are not greatly
changed from the unmasked values. The result is that such masked data
can have a fairly high re-identification rate when using the Census proba-
bilistic record linkage software, and hence may not rate sufficiently highly for
data security [Kim95|. Methods has been tried to either edit the additive
masking terms to only use sufficiently large ones or to use rank swapping
subsequent to additive noise masking in order to disguise the most easily
re-identified records. Of course these adaptations have their price on the
analytic validity.

1.1.2 Mixture Noise

The approach investigated by Roque [Roque| was to replace the distribution
of the additive noise term by a mixture of distributions. Thus instead of y
having a normal distribution of mean 0 and covariance ¥, we let y have a
density function f of the form

k
F@;0,8) = wify (w0, %)
j=1

where we could take each density function f; (m; s Ej) to be a (normal)
density of mean j; and covariance ¥;. We can see some basic properties of
mixture distributions.

Let X, be a random variable with distribution f; (:c; I Ej) with mean
p; and covariance matrix 3;, so that

1 = /fjdx
Hi = /Jffjdx

xj = / (v =) (2=)" fyde

so that
X = /(ff — 1) (@ = py)" fida

= /xfojdm — (/xbdm) " (/ fojdx> + ,uj,ujr

Ny p—
SO

/ZL‘ZL‘Tfjd:L‘ =%+ ,uj,ujr.
Let Y be a random variable with mixture distribution
k
f = ijfj, wj Z 0
j=1

In order for f to be a probability distribution, we must have

k
lz/f:;%‘/fj

k

ij =1.

=1

so that

The mean p of Y is the first moment

uz/xf

k

= Z%‘/l’fa’
j=1
k

= ijﬂj
j=1

(1.1)

while the covariance matrix X of Y is the second moment about the mean

2= [-n@-ws

(ol
_ /x:z:Tf —

and

k
/ZL‘CL’T = zwj/xfoj
j=1
k
= > wi (B +)

J=1

from (1.1), so that
k
S = wi (8 +) — pp”
j=1

In the special case where we have chosen our mixture distribution to have

Z€ero mean, i.e.
k
p= E wjp; =0,
j=1

we have that the covariance matrix of Y is given by

k
S=3 w (S5 +m)

i=1

We can make the simplifications that all component covariances are propor-
tional to the total covariance

where o; > 0 is a scalar, or even more simply that they are all the same

Ej = O'E.

8

Also there seems to be no reason not to make all weights equal

(,Uj:—.

k

In this case, the nonlinear system for the covariance simplifies to

k
Y = Z UE—{-/LJ,U,]

?rl»—k

k(1-0)X = ZMJM;-T
j=1

However, even with these simplifications, in order to solve the (underdeter-
mined) nonlinear system for the mean vectors p; requires some sort of nu-
merical solution techniques. In Chapter 2, we give a simplification analogous
to the standard noise model to avoid these numerical complications.

Chapter 2

A Factored Approach to
Computing Mixture-Model
Noise

2.1 Problem Standardization

Let X be a random vector with mean p and covariance . We wish to
produce a new random variable Z with mean p and covariance (1 + d) ¥ by
adding an independent random vector Y with mean 0 and covariance dX2,

Z=X+Y.

To standardize the problem, we can scale by the square root Y2 of the co-
variance matrix where .
3 (z%) =5

to have the equivalent condition
N7 =YX + % 7Y,

Since we had that
S=E[(X - (X p)]

we now have
1 1 T 1
E|S 3 (X —pu) (X —p)° (2*5)] — ¥ iy (z*

=17

Nl=

X

10

so that 3 .
X=%2X

has mean [i = E_%,u and covariance I. Likewise, the transformed variable
Y =2y

has mean 0 and variance dI.
Thus we wish to solve the standardized problem

Z=X+Y.
To produce Y, let
Yy
po|
v,

where the {Y;} are independent scalar random variables of mean 0 and vari-
ance d. For the Kim-Winkler method, we can use

Y, = Vdw;

where W; has a standard normal distribution and the {WV;} are indepen-
dent. However, any distribution with zero mean and unit variance will do.
The Roque mixture approach is to use mixture distributions where W, has
probability density function f; where

k
Wi fi=Y wify (x:0;,di),
j=1

where f; (x;0;,d;) is a scalar probability density with mean 6, and variance
d;. In order for this to be a probability density, we must have w; > 0 and

1:/fi

k
= ;wj/fj
k
“3
j=1

11

The mean of W; is given by

/fcfi:jzi;%/l’fj
= zk:%‘@j
j=1

so if W; is to have zero mean, we must have

k
Z ijj = 0.
j=1

Likewise, for zero mean W;, the variance of W; is given by

k
=3 w [,
/CC jzle/fﬂ j
k
=D wji (di+05)
j=1

Thus if we want W; to equal 1, then we must have

k k
Zw]ﬂ? =1- ijdi
j=1 j=1
=1-—d;
The simplest case for the mixture is if w; = %, in which case

k

> i=k(1l—d).

=1

2.2 Computational Approach

So it looks like the simplest way to produce a mixture component is as follows.
Choose a component distortion factor 0,0 < ¢ < 1 and a number k£ > 2 of

12

mixture components. Choose arbitrary numbers 9;, 1 < j <k — 1. Let

k—1
== 1.
j=1
Compute
k
§=2_;
j=1
and let
kE(1—0?)
so that
k
> 0;=0
j=1
and

k
Z@?Zk(l—OQ).
=1

Let scalar random variable Y have mixture density

k
Z x@a

where the f; (x;60;,0%) are scalar probability densities with mean #; and

variance o2. Then we have seen that Y is a random variable with mean 0

and variance
k

Pr|>—‘

wlv—

If we create our random vector

Yi
v |

Y

by using independent scalar components Y; generated as above, then Y has
mean 0 and covariance . Thus if we let

Y =Vdxzy
then Y has mean 0 and covariance dX.

Example 1 The smallest case is k = 2. In this case, 1, = —1); and
S = 2¢?, so that

2
o= 2Ly A
207
and 03 = —/1 — 2. Thus the only parameter choice is 0 < o < 1. As
o — 17, both 01,05 — 0. If we are using normal densities in the mizture,
then the mizture tends toward the standard normal density. As o — 0T,
the symmetric mixture becomes more pronouncedly bimodal, in the limit ap-
proaching binary density centered at +1. For smaller o, as the mixture
density gets more concentrated at near £1, the density tails diminish.

14

Chapter 3

Jay Kim’s Method for
Computing Subpopulation
Estimates from Masked Data

3.1 Masked Data and Scaled Masked Data

Let X be a data set with mean p and covariance .. We generate independent
noise Y with mean 0 and covariance . That is, for each record x € X, we
obtain the masked record z by computing

z:x+\/3y

where y is an independent random vector with mean E [y] = 0 and covariance
Cov (y) = X. The masked data is then

7 =X+Vdy

which has mean E [z] = p and covariance Cov (z) = (1 +d) X. If we prefer,
we can get scaled masked data set Z' with covariance equal to the raw data
by using

since then

and

3.2 Statistics for Subpopulations of Masked
Data

Now suppose that we want to consider the subpopulation Z, of the masked
data set Z where the records have been obtained from the subpopulation X
of the unmasked data set X by

Zs = Tg + \/Ey
We see that we still have, as in (1) in Kim,

Elz] = Elz]+ VdE[y]
= E[x]
= /’[’S

but that the covariance is
Cov(z) = E|(z—) (2 —)"
= (0=)+ Vi) (G0 =)+ V)|

— E (@ =) (2 —)"] +E {(‘/Ey) (\/Ey)T}
= Cov (z4) +dX

16

Thus if we want to recover the covariance of the original subpopulation co-
variance from the masked data, since
Cov(z)=(1+d)%,
we have that
Cov (zs) = Cov(zs) —dX
= Cov (zs) — % Cov (2)
as in (2) and (5) in [Kim90].

3.3 Statistics for Subpopulations of Scaled Masked
Data

If we choose our subpopulation from the covariance-corrected masked data,
so that

1 1
D= et (1 ——=—
Jitd (VIt d) :

= \/11+—d(x5+\/3y)+<1_\/11+—d>u

we see that we have the sample mean

(Efw] + VAE[) + (1 _ \/11+—d> "

~

E 2]

1
ﬁ‘“(“m—)“

so we may recover E[z;] = p, from

1
+d
py, = V1+dE[Z] — (\/1+d—1)u
= VItdE[] - (\/1 +d— 1) E[]
as in [Kim90] (7). So since

’ / 1 1 1 1
Al = g (o V) + (1 1+d>”_<¢1+—d“s+(l_¢1+—d>“)
Vi
- \/11+—d("’““5_”5)+ T d

17

then the covariance is
Cov(z) = E|(L—E[l)) (<L~ E[2L)"]
1 Vd
<\/1 A o

1 d
= m COV (CL’S) + m COV (y)

S8

1 Vd
dy>< 1+d(IS_MS)jL 1+

If we want to recover Cov () from the masked data, we can use

Cov(y) = X
Cov (2)

so that

Cov (z5) = (1+4d)Cov(z) —dCov(y
= (1+4d)Cov (z,) —dCov (7)

3.4 Revised Computation of Subpopulation
Estimates from Masked Data

Jay Kim has observed that we do not really subtract the mean of the distri-
butions but only the sample mean, which contributes to the variance of the
estimates. Here we recalulate the above variances using the sample mean.
The asymptotic formulas remain the same.

3.4.1 Masked Data and Scaled Masked Data

Let X be a data set
T

Ty

X = xg

Ty

that is a set of n independent samples of a random vector x of dimension m,
where x has mean

p=E[z]

18

and variance/covariance matrix

Z:Var(x):E[(x—,u)(x—,u)T}.

We note that the sample mean

has mean

and variance

1
Var (z) = —2X..
ar (T) "
The sample X has sample variance
I T
S =— X — X —
- ;(w" (X = p)
where we denote
(z1—)
x J—
X (2.M
(xn - ,U/)T
Since ;
X ifi=y
efle-w@-w]={ 5] 3.1

due to the independence of the samples, we see that
E[S] =%

Let y be a masking random vector, independent of =, of dimension m with
mean 0 and variance Y. We define the masked random variable z by

Z=x+¢@

19

for a given choice of the scalar parameter d > 0. We see that z has mean

Elz] = E[:z:—l—\/gy}

= E[z] + VdE[y]
= W

and variance
clie=nte=n] = (o) (s) |
- el (et et i o]

dE [ny]
= (1+4d)X.
Thus the masked data set
21
z-| >
Zn

has a sample mean with expected value p and sample variance with expected
value (14 d) 2.

Now suppose that we want to rescale our masked data so that its sample
variance is also . If we knew the mean p of x, then the simple way to do
that would be to compute

1 1
= z4+ (11—
Ji+d (Vit d> H
where it is clear that 2’ has mean p and variance 3. However, in practice p is

generally unknown, so we need to use an approximation, such as the sample
mean Z. So instead, if we define our scaled masked variable by

| 1
, N)
c T itd (Jitd)”

20

we see that we still have

1

E[/] = 1+dE[z]+(1—

= u

but since Z is not constant, but has it’s own variance, the variance of 2’ is
more complicated. To simplify notation somewhat, let

1
a:
1+d
so that]

We can then compute

Var (2/) = E[(z'—,u) (Z,—M)T}
— E[z-m+(1-a)E-p)(a—m+(1-a)(z-p)

We recall that

and similarly

1
Var (z2) = — 3%

na?
For any sample element z; from our masked data, we have

- mE-n] = LY [-

1
- —N
na?

similarly to (3.1) due to the independence of the z;. Thus we can see that

, 2a (1 — 1—a)?
Var (z) = a®Var(2) + all—a) Y+ (1=a)
! na? n

_ <1+2(1—a)+(1—a)2>2

Var (2)

na na?

21

Note that

2(1—a)+(1—a)2

Sl 3|~ 3|r

so that p
Var (zé) = (1 + —) by
n

and Var (z;) approaches ¥ asymptotically with increasing sample size n.

3.4.2 Statistics for Subpopulations of Masked Data

Now suppose that we want to consider the subpopulation Z, of the masked
data Z where the records have been obtained from the subpopulation X, of
the unmasked data set X by

Zs = Tg + \/Ey,

where vy is still random noise of mean 0 and variance . We see that we still
have, as in (1) in Kim,

Elz,] = E[z]+ VdE[y]
= Elzy]
= MS

but that the covariance is

Var(z) = E[(z—) (5 —)"

= E ((xs —) + \/Ey) ((ms — ps) + \/3@/)1

= (=) (=)] + | (Vi) (V)]
= Var (z5) + d2

22

Thus if we want to recover the covariance of the original subpopulation co-
variance from the masked data, since

Var (z) = (14 d) X,
we have that
Var (z;) = Var(zs) —dX

d
= Var (Zs) — m Var (Z)

as in (2) and (5) in Kim. The best estimates of these variances are given by
the sample variances of Z, and Z respectively.

3.4.3 Statistics for Subpopulations of Scaled Masked
Data

If we choose the subpopulation from the scaled masked data
Z=az+(1—a)z

where

then the subpopulation has samples
z,=azs+(1—a)Z.
We have that the subpopulation mean is given by
Elz.] = aE[z]+ (1 —a)E[Z]
= ap,+(1—a)p
Thus from the masked scaled subpopulation sample mean

=g

seS

if we compute

-—z= 1+dz;—(1+d—1)z (3.2)

23

we see that

EFé—l_%}:HQ:EMJ:%

a a

That is, (3.2) adjusts the scaled masked subpopulation mean to give an
estimate of the raw data subpopulation mean, as in Kim (7). Likewise, to
compute the variance, since

z—Elzl=a(z—Ela)+ (1 —a)(z - p)

to evaluate

Var (2)) = E [(2}~ E[]) (2} — E[])"]

we have seen that

Var (z,) :EU%—HMM%—HMV}
= Var (z,) + dX

and

Var(s) = E[(z—p) ()]

We further note that

E[(z—El)) (=)| = ElG—ptu—ElR)E-n]

so that altogether

n

Var () = aQ(Var(:cs)+dz)+2a(1—a)(HdZ)+(1—a)2(1+d2)

= a*(Var (z,) + d¥) + EZ
n

1 i d
= — s _— — E
1+dvar(m)+<1+d+n)

24

Thus

Var(xs):(1+d)Var(z;)—d<1+ 1+d>§]

n
Since for the scaled data 2/,

Var (2') = %,
we have that

Var (z5) = (1 +d) Var (2) — d (1 + 1%[) Var (2)

and thus asyptotically
Var (z5) = (1 + d) Var (z;) — d Var (2') .

Again, The best estimates of these variances are given by the sample vari-
ances of Z, and Z respectively.

25

Chapter 4

Note on Additive Mixture
Noise Data Masking

4.1 Introduction

We have considered some “information loss” scoring methods and some re-
identification rate computations to arrive at some overall data masking scores
when applied to two data sets. The information loss scores and data masking
scoring methods are based on those of Domingo-Ferrer [Domingo-Ferrer|, but
we suggest some modifications. The data sets are the one used by Domingo-
Ferrer in his study and some individual income statistics previously studied
by Kim and Winkler [Kim95].

4.1.1 Information Loss Scores

Let X be a n x m array of the original raw data and Y be a n x m array of
masked data. One information loss statistic proposed by Domingo-Ferrer to
measure the change in the raw data is given by

1 |zi; — yij]
m—zz]‘:C”‘ -

7j=1 i=1

This measure has some problems when the data set has values equal to 0, as
is the case with the Kim-Winkler data, where for some variables (e.g. rental
income, tax-exempt income) zero is the mode value. If one replaces the
denominator by some constant when z;; = 0, then the value of this expression

26

can be arbitrarily changed by the choice of this constant. Furthermore,
this statistic tends to be several orders of magnitude larger that the other
information loss statistics, and thus tends to swap all other comparisons. In
order to reduce these problems, we have considered the modification

, 1 o~ |z — vl
il = — Y -1 .
mn;;0-5(!$iﬂ + [wij])

This does result in restricting the size of the statistic to il1 < 2. However,
it still tends to dominate the other information loss statistics and it does
not totally eliminate the problem of dividing by zero. While for the case of
additive noise, it is unlikely that both x;; = 0 and y;; = 0, for other strategies
such as data swapping in a file where a lot of the records have zero values,
this could easily happen.

However, beyond these problems, by scaling the statistic by the individual
data points, the resulting statistic is not very stable. Leaving aside zero data
values, when the data values are very small, then small adjustments in the
masked data produce large effects on the summary statistic. If we view our
data set as independent samples from a common distribution, it is more stable
to measure variations in the sample values by scaling them all by a value
common to the variable. Thus if X and Y are independent random variables
both with mean p and variance o2, then the random variable Z = X —Y has
mean 0 and variance 202. Hence a common scale for Z would be its standard
deviation v/20. In our case, we can estimate that standard deviation with
the sample standard deviation S. This motivates the proposed modification
for the data perturbation information loss statistic given by

m n

. 1 |zij — v
ills = —) __IYL
mnz V28,

j=1 i=1

This uses a common scale for all values of the same variable in the data set,
the denominator is not zero unless the values of the variable are constant
throughout the data set, and while the statistic does not have an a priori up-
per bound, the values in our empirical studies tend to be closer in magnitude
to the other information loss statistics.

The other information loss statistics that we compute are the same as
some of those suggested by Domingo-Ferrer. To measure the variation in

27

the sample means, we compute
m
: 1 T; — Uy
il2=— E 1% = Bl .]|.
m |75
For variations in the sample covariance matrix, we compute

j‘cmLmM—Cwqu

. 2

i=1 k=1 ’COV (X))

for variations in the sample variances, we compute
. m(cqu) — Cov (Y)

==
m j=1 ‘COV (X)

ii i ‘

JJ

and for variations in the sample correlation matrix, we compute

2 m
= ——— X)., — Y).
il5 mm=1) jEZl 2 ’Cor()J,C Cor ()J,C

We wish to combine these information loss statistics into a summary infor-
mation loss score. While it’s not clear what sense it really makes to combine
these numbers, and even if we do, its not clear what appropriate weighting
we should give to them, in the absence of deeper insight, we just compute
a straight average. However, we may choose which statistics we wish to
include. As we have noted, the data perturbation measure i/l is somewhat
numerically problematic. Moreover, for the purposes of data masking, it
is not clear if one cares how much individual data records are perturbed as
long as the overall statistical structure of the data set is preserved. Thus
one information loss penalty score can be computed by leaving out ill to get

A2+ il3 4 dl4 + 5

0
¥ 4

On the other hand, one can leave it in to get

= ol + a2 4413 + il4 4415
= .)

S

28

Another objection to combining all theses scores is that il3, il4, and i[5 are
redundant. With the covariance, variance, and correlation, if we know two
of these things, then we know the third. Furthermore, the covariance score
il3 is to a lesser degree subject to the same kind of scaling instability as found
with ¢/1, namely that the smallest values make the largest contributions to
the score. In particular, we observe that the score tends to be dominated
by those components corresponding to the smallest correlations. Thus as an
alternative summary information loss statistic, we suggest using the rescaled
data perturbation score and leaving out the covariance score to get

,_ s +il2 +ild +ils
_ ; ,

S

4.1.2 Additive Mixture Noise

For each of the following data sets X, we produced a noise data set Y with
a mixture distribution designed to have 0 mean and the same covariance as
X. The masked data set Z is then computed by

Z=X+dY

where we can vary the parameter d to adjust the concentration of noise. We
do this by simulating an uncorrelated mixture noise random variable W with
mean 0 and covariance / and then multiplying

Y =W (4.1)

where 23 is a square root factor of the covariance matrix % = Cov (X) where

The data set W is generated from independent random samples of a mixture
distribution with density function

f(x)= %N (m; V1=02, 02) + %N (m; —V/1 =02, 02)

where N (z; i, 02) is the normal density function with mean p and variance
2. We use a parameter value of 02 = 0.025. We consider masked data sets

generated using d = 0.01,0.05,0.10, 0.20.

29

The resulting random variable has mean p and covariance (1 + d) X. We
can get a scaled data set with the same mean and covariance X by rescaling

Zsc = +,U/

1
= Z+(1-
V1+d (v1+ d) 8
We thus consider eight masked data sets computed as unscaled and scaled

versions from the four choices of the noise proportion d, and compute infor-
mation loss and re-identification rates for each masked data set.

4.2 Domingo Data Statistics

The Domingo data set consists of 1080 records from which we have masked 13
real variables. We can observe here how the information loss scores increase
with increasing noise level d. Rescaling the masked data has no mathematical
effect on the mean and correlation. Since the rescaling somewhat contracts
the data, there tends to be some decrease in the data perturbation scores.
The effects of rescaling are most significant in the covariance and especially
the variance scores.

Domingo Data Information Loss Statistics

i1 ills 12 il3 14 i15 s0 sl s2
mixadd01 0.2041 0.0628 0.0019 0.0281 0.0115 0.0017 0.0108 0.0495 0.0195
mixadd05 0.3257 0.1404 0.0041 0.0876 0.0533 0.0037 0.0372 0.0949 0.0504
mixadd10 0.3984 0.1985 0.0059 0.1520 0.1047 0.0051 0.0669 0.1332 0.0786
mixadd20 0.4886 0.2807 0.0083 0.2731 0.2066 0.0069 0.1237 0.1887 0.1256
scalmixadd01l 0.2023 0.0625 0.0019 0.0213 0.0033 0.0017 0.0071 0.0461 0.0174
scalmixadd05 0.3158 0.1372 0.0041 0.0477 0.0073 0.0037 0.0157 0.0757 0.0381
scalmixadd10 0.3785 0.1900 0.0059 0.0669 0.0101 0.0051 0.0220 0.0933 0.0528
scalmixadd20 0.4485 0.2584 0.0083 0.0945 0.0135 0.0069 0.0308 0.1143 0.0718

The matching software has two methods for measuring agreement be-
tween two real values. In either case, it interpolates between the agreement
weight and the disagreement weight. For the d method, the slope of the
interpolation line is given by

|Iz' — Zi|

max (|z;],0.1)

30

and for the [method, the slope of the interpolation line is given by

llog z; — log z|

max (log z;,0.1)’

In this case, we see that when the perturbations are small, the d method
does a little better than the [method. However, when the perturbations
get large, the [method is better able to see past moderate perturbations to
large values.

The re-identification software produces a list of linked pairs in decreasing
matching weight. For this small data set, the re-identification rate is com-
puted as the total number of correctly linked pairs out of the total number
of records in the data file. This is a rather optimistic re-identification score
since most of the true matches are mixed among many false matches, and
an analyst would probably have difficulty picking many of them out. In any
event, we can see that for this data set with so few records and so many
matching variables, a 1% noise level does not provide adequate masking, but
the re-identification rate drops off rapidly with increasing noise level.

Domingo Data Re-identification Rates

d metric [metric
mixaddO1 0.7667 0.7176
mixadd05 0.1482 0.3556
mixadd10 0.0574 0.2194
mixadd20 0.0139 0.1009
scalmixadd01 0.7704 0.7370
scalmixadd05 0.1602 0.3537
scalmixadd10 0.0648 0.2417
scalmixadd20 0.0269 0.1241

For an overall data masking score, we combine the information loss score
with the re-identification score. Since we computed three data loss scores,
we compute three overall scores:

Ascore = 100 (W)
1 .

Dscore = 100 (%)
9 .

Sscore = 100 (%)

31

Domingo Data Scoring Metrics

d Metric [Metric

Ascore Dscore Sscore Ascore Dscore Sscore
mixaddO1 38.88 40.81 39.31 36.42 38.36 36.86
mixadd05 9.27 12.16 9.93 19.64 22.53 20.30
mixadd10 6.22 9.53 6.80 14.32 17.63 14.90
mixadd20 6.88 10.13 6.98 11.23 14.48 11.33
scalmixadd01l 3895 40.90 39.46 3721 39.16 37.72
scalmixadd05 894 11.94 10.06 1847 21.47 19.59
scalmixadd10 4.43 8.00 597 13.19 16.75 14.73
scalmixadd20 2.89 7.06 4.94 7.75 11.92 9.80

4.3 Kim-Winkler Data Statistics

The Kim-Winkler data consists of 59,315 records each containing 11 real
Here we show the information loss statistics for
our additive mixed noise masking for the whole data set. We note that the
11 date perturbation statistic tends to higher than that for the Domingo
data, possibly due to the large number of zero entries in the Kim-Winkler
data, whereas the ¢/1s data perturbation metric is about the same as for
In general the scaled data tends to get better results

variables for income data.

the Domingo data.

reducing the covariance measures /3, :/4 than in the Domingo data case.

Kim-Winkler Data Information Loss Statistics, 11 Variables

i1 ills i12 il3 il4 i15 s0 sl s2
mixadd01 1.1649 0.0604 0.0022 0.0142 0.0102 0.0004 0.0068 0.2384 0.0183
mixadd05 1.3081 0.1350 0.0049 0.0563 0.0505 0.0009 0.0282 0.2841 0.0478
mixadd10 1.3807 0.1909 0.0070 0.1056 0.1007 0.0013 0.0537 0.3191 0.0750
mixadd20 1.4565 0.2700 0.0099 0.2013 0.2010 0.0017 0.1035 0.3741 0.1207
scalmixadd01 1.1633 0.0601 0.0022 0.0081 0.0007 0.0004 0.0029 0.2349 0.0159
scalmixadd05 1.3016 0.1321 0.0049 0.0180 0.0015 0.0009 0.0063 0.2654 0.0349
scalmixadd10 1.3695 0.1830 0.0070 0.0248 0.0020 0.0013 0.0088 0.2809 0.0483
scalmixadd20 1.4375 0.2488 0.0099 0.0332 0.0026 0.0017 0.0119 0.2970 0.0658

For our re-identification, we only used eight of the income variables, so
we computed the information loss scores based on just these eight variables.

32

They show a generally slight increase over the eleven variable scores.

Kim-Winkler Data Information Loss Statistics, 8 Variables

i1 ills 12 il3 il4 i15 sO sl s2
mixadd01 1.3037 0.0612 0.0026 0.0118 0.0102 0.0004 0.0063 0.2657 0.0186
mixadd05 1.4430 0.1369 0.0059 0.0522 0.0505 0.0009 0.0274 0.3105 0.0486
mixadd10 1.5121 0.1936 0.0083 0.1014 0.1008 0.0012 0.0529 0.3448 0.0760
mixadd20 1.5823 0.2737 0.0117 0.1986 0.2012 0.0015 0.1033 0.3971 0.1220
scalmixadd01l 1.3023 0.0609 0.0026 0.0048 0.0008 0.0004 0.0022 0.2622 0.0162
scalmixadd05 1.4374 0.1339 0.0059 0.0108 0.0018 0.0009 0.0049 0.2914 0.0369
scalmixadd10 1.5028 0.1853 0.0083 0.0150 0.0024 0.0012 0.0067 0.3059 0.0493
scalmixadd20 1.5669 0.2516 0.0117 0.0203 0.0031 0.0015 0.0092 0.3207 0.0670

For the re-identification scores, we computed the proportion of correctly
linked pairs out of the total number of records, as in the case of the Domingo
data. In this case, we only compute the results using the [interpolation
metric, since it is much more effective on this data. However, reporting the
total number of correct matches in the full link file is probably even more
misleadingly optimistic than in the Domingo data case. For the Domingo
data, the true matches tend to be distributed throughout the link file. As the
noise level of the masking increases, this distribution becomes more sparse
and random. In the case of this data set, there are twenty or so records
that are extreme outliers with one or more income categories much higher
than the values for the mass of the records. Many of these records fail to
be successfully masked from the re-identification through most noise levels,
especially using the [metric. Thus there are always several clearly true
matches at the top of the match-weight sorted link file. However, as the
matching weights decrease, the proportion of true matches rapidly drops off
as we include more and more false links in with a decreasing number of true
matches. Thus is seems reasonable to cut off the count of true matches
at some point, since beyond this point, any true matches will only appear
sporadically among the preponderance of false matches and are unlikely to be
discerned by the analyst. Here we choose a rather low cutoff point of 20%.
This means that at this point, the number of linked pairs at this matching
weight or higher contain 20% true matches and 80% false links. Below this

33

point, the true matches become much rarer.

Kim-Winkler Data Re-identification Rates, | Metric

Total File Matches 20% Zone
mixaddO1 0.0841 0.0096
mixadd05 0.0346 0.0027
mixadd10 0.0240 0.0018
mixadd20 0.0149 0.0011
scalmixadd01 0.0844 0.0098
scalmixadd(05 0.0355 0.0031
scalmixadd10 0.0249 0.0022
scalmixadd20 0.0174 0.0016

Here are the overall data masking scores for the Kim-Winkler data. The
data masking tends to be more effective here, especially at lower additive
noise levels. Again inclusion of the #/1 data perturbation score tends to
dominate and obscure the rest of the results.

Kim-Winker Data Scoring Metrics

Full File Matches 20% Zone Matches
Ascore Dscore Sscore Ascore Dscore Sscore
mixadd01 4.52 1749 5.14 0.80 13.77 1.41
mixadd05 3.10 17.26 4.16 1.51 15.66 2.57
mixadd10 3.85 18.44 5.00 2.74 17.33 3.84 .
mixadd20 592 1945 6.78 523 18.76 6.09

scalmixadd01 433 1733 5.03 0.60 13.60 1.30
scalmixadd05 202 16.35 3.62 0.40 1545 2.00
scalmixadd10 1.58 16.54 3.71 0.45 1541 2.58
scalmixadd20 1.33 16.91 4.22 0.49 16.12 3.43

4.3.1 Subpopulation Information Loss Statistics

The additive noise procedures are supposed to preserve means and covari-
ances on arbitrary subpopulations, at least when these statistics are properly
corrected, as discussed by Kim. Here we compute the information loss scores
for two subpopulations. We see that even for the corrected means and co-
variances, there are still generally somewhat higher scores than for the full
data set. We especially note that the scaled data sets fail to recover the
original data covariance and variance values as well.

34

S4 Return Type Subpopulation Information Loss, 8 Variables, 5885 Records

il1 ills i12 i13 il4 i15 sO sl s2
mixadd01 1.3992 0.2457 0.0572 0.1008 0.0082 0.0056 0.0430 0.3142 0.0792
mixadd05 1.5591 0.5495 0.1280 0.2319 0.0236 0.0136 0.0993 0.3912 0.1787
mixadd10 1.6312 0.7771 0.1810 0.3419 0.0396 0.0207 0.1458 0.4429 0.2546
mixadd20 1.6970 1.0989 0.2559 0.5390 0.0692 0.0328 0.2242 0.5188 0.3642
scalmixadd01l 1.3974 0.2445 0.0572 0.1297 0.0082 0.0056 0.0502 0.3196 0.0789
scalmixadd05 1.5522 0.5362 0.1280 0.2981 0.0236 0.0136 0.1158 0.4031 0.1754
scalmixadd10 1.6206 0.7411 0.1810 0.4397 0.0396 0.0207 0.1703 0.4603 0.2456
scalmixadd20 1.6813 1.0039 0.2559 0.6931 0.0692 0.0328 0.2628 0.5465 0.3405

Here we see slightly better information loss scores for a slightly larger
subpopulation.

Schedule C Subpopulation Information Loss, 8 Variables, 7819 Records

il1

ills

i12

i13

il4

i15

sO

sl

s2

mixadd01
mixadd05
mixadd10
mixadd20
scalmixaddO1
scalmixadd05
scalmixadd10
scalmixadd20

1.4096
1.5597
1.6266
1.6884
1.4076
1.5534
1.6170
1.6741

0.2201
0.4921
0.6960
0.9843
0.2190
0.4803
0.6639
0.8994

0.0119
0.0267
0.0378
0.0535
0.0120
0.0267
0.0378
0.0535

0.0651
0.1753
0.2991
0.5306
0.0838
0.2253
0.3845
0.6822

4.4 Summary Mixture Noise

To create the colored noise with the desired covariance, one multiplies the
simulated white noise by a matrix that is the square root of the raw data
However, the square root of a positive
One way to compute a square

covariance matrix X, as in (4.1).
definite symmetric matrix is not unique.
root is to compute the Cholesky factor, which is an upper triangular matrix
C' with the property that CTC = X. The computation of the Cholesky
factor has a straightforward algorithm. Another approach is to compute the

0.0092
0.0258
0.0430
0.0752
0.0092
0.0258
0.0430
0.0752

0.0049
0.0120
0.0185
0.0299
0.0049
0.0120
0.0185
0.0299

Statistics

eigenvalues and eigenvectors of ¥ to get a decomposition

35

Y =UDU"

0.0228
0.0600
0.0996
0.1723
0.0275
0.0725
0.1210
0.2102

0.2884
0.3599
0.4050
0.4755
0.3035
0.3686
0.4202
0.5030

0.0615
0.1392
0.1988
0.2857
0.0613
0.1362
0.1908
0.2645

where D is a diagonal matrix of (positive) eigenvalues and U is an orthogonal
matrix of eigenvectors. Thus one can obtain a square root by computing
the matrix UD? where D2 is the diagonal matrix of the square roots of
the eigenvalues. To test to see if there were any numerical consequences
of the matrix square root computation, we used both forms and compared
the information loss scores. That is, for each square root form, we take the
colored noise matrix
Y =23 W

and compare the means of the variables to 0 and the covariance of Y to the
covariance of the raw data matrix X. Based on these examples, the Cholesky
factor tends to do a bit better on the mean and somewhat worse on the
variance and covariance. Both methods do worse on the Domingo data than
on the Kim-Winkler data. This may partly be directly attributable to the
relative sizes of the data sets, but more specifically, the eigenvalues of the
covariance matrices reveal than the Domingo data covariance is much worse
conditioned (more nearly singular) which probably makes any matrix square
root calculation numerically less accurate.

Domingo Data, 13 Variables, 1080 Records
Mean Variance Covariance Correlation
Eigenvalue 0.0185 0.0154 0.4109 0.0191
Cholesky 0.0178 0.0450 0.5116 0.0181

Kim-Winkler Data, 11 Variables, 59,315 Records
Mean Variance Covariance Correlation

Figenvalue 0.0221 0.0038 0.0432 0.0021

Cholesky ~ 0.0102 0.0019 0.0526 0.0024

Kim-Winkler Data, 8 Variables, 59,315 Records
Mean Variance Covariance Correlation
Eigenvalue 0.0336 0.0027 0.0303 0.0020
Cholesky 0.0215 0.0023 0.0385 0.0022

We note one more time that the covariance information loss score (3 is the
least stable of these summary information loss scores. The terms contribut-
ing the largest proportional covariance error terms are the terms that cor-
respond to terms of the smallest correlation. For example, in the Domingo
data, the largest proportional covariance error terms come from the variable

36

pairs (1,4) and (1,7). The Domingo data covariance for these terms is

Cov(1,4) = —1774438
Cov (1,7) = 8246860.9

while the eigenvalue factorization produces corresponding covariances

Cov(1,4) = 16779788
Cov(1,7) = 52443168

which produce substantial error terms of

|—1774438 — 16779788|

10.4537
|— 1774438
18246860.9 — 52443168
5.3592
8246860.9

and the Cholesky factorization produces corresponding covariances

Cov(1,4) = 245566307
Cov(1,7) = 110528796

which produce error terms

| —1774438 — 245566307

14.8407
|— 1774438
[8246860.9 — 110528796 . o\ o
|8246860.9)]

However, the correlations for these variables in the original data are

Cor(1,4) = —0.003577
Cor (1,7) = 0.003841

while the correlations from the eigenvalue noise data are

Cor(1,4) = 0.0335967
Cor(1,7) = 0.0242244

37

and the correlations from the Cholesky noise data are

Cor(1,4) = 0.048866
Cor(1,7) = 0.051542

While these correlation terms contribute to the total correlation error esti-
mation, they are not out of proportion with several other correlation error
terms. On the other hand these covariance error terms substantially increase
the total covariance error estimate. The problem again is that the scaling
factor varies with the term. The smaller covariance terms that correspond
to the smallest correlations are used to scale the covariance errors, resulting
in a high proportion value.

38

Chapter 5

Second Order Information Loss
Measures

5.1 Information Loss Measures

We wish to consider alternative measures to the Domingo-Ferrer information
loss measures for covariance and correlation. If Y x = (sfg) is the (sample)
variance/covariance matrix for the raw data set and X, = (sg) is the sample
variance/covariance matrix for the masked data, then the Domingo-Ferrer
variance information loss measure is given by
1l o
m= sis
and the covariance information loss measure is given by
R ot o]
e 9) i el 52
X (
m(m+1) =i |55
If we let S = diag (s;;), the diagonal matrix consisting of the variances, then
the correlation matrix C' = (pij) is given by

C=S571x57%

and the correlation information loss measure is given by

mz >_ oy = ril. (53)

i=1 j=i+1

39

We have noted that these three measures are redundant and that the covari-
ance matrix one is the poorest scaled.

We wish to consider alternative measures that may be more intrinsic or
stable. We explore using the eigenvalues and eigenvectors of the matrices to
form alternative information loss measures. Since the covariance matrix 3
is symmetric positive definite, we can write Y in the form

Y =UDU"

where D is a diagonal matrix of positive eigenvalues and U is an orthog-
onal matrix where the columns are the corresponding eigenvectors. We
may assume that the eigenvalues appear in order of decreasing magnitude.
Comparably to the variance information loss measure, an alternative change-
of-scale information loss measure can be given by the average proportional

eigenvalue change
1 & |dF —d?
- {Z—z (5.4)

Geometrically, for any choice of positive constant k, the set of points x sat-
isfying
'Yr =k

for positive definite symmetric ¥ is an ellipsoid. The eigenvalues of 3 deter-
mine the length of the axes of the ellipsoid and the eigenvectors of ¥ deter-
mine the direction of these axes. The eigenvalue information loss measure
measures the scale change for the ellipsoids for ¥y and ¥,. To determine
the extent of orientation change for the ellipsoids, we can measure the angle
change of the eigenvectors. For the corresponding unit column vectors of
Ux and Uz, we have that

T
0 < arccos ((uZX) uZZ) <7
so that we can have an eigenvector orientation information loss measure

1 v arccos ((uzX)TuzZ) (5.5)

mi
=1

where we adjust the scale to be between 0 and 1.

40

Noise Level Variance Covariance Eigenvalues Eigenvectors

1% 0.010041 0.015799 0.010103 0.000651
5% 0.050091 0.060726 0.050228 0.001404
10% 0.100129 0.114940 0.100321 0.001900
20% 0.200182 0.221128 0.200450 0.002469

Table 5.1: Mixture Noise Covariance Information Loss

5.2 Eigenvalue Results

We apply these eigenvalue information loss measures to the Kim-Winkler
data. In Table 5.1, we compare the Domingo-Ferrer information loss mea-
sures for variance (5.1) and covariance (5.2) with the information loss mea-
sures for the eigenvalues (5.4) and eigenvectors (5.5) for the variance/covariance
matrices Xy and Y7 where the masked data set Z has been generated by
additive mixture noise

7 =X +Vdy

where Y is random noise with a mixture distribution with mean 0 and covari-
ance Xy for different noise levels d = 0.01,0.05,0.1,0.2. Hence we expect Z

to have covariance
Yz7=(14+4d)Xx.

We see that the variance (5.1) and eigenvalue (5.4) information loss measures
give comparable results, reflecting the expected proportion of inflation of the
scale of the matrix. The covariance information loss measure (5.2) trends to
be somewhat inflated, resulting from variable scaling for differently correlated
off-diagonal terms. The eigenvector information loss measure (5.5) is smaller
and shows less percentage change from one noise level to the next than does
the other measures.

In Table 5.2, we compare the correlation information loss measure (5.3)
with the eigenvalue and eigenvector information loss measures computed from
the correlation matrices C'xy and Cy. Here all three of the information loss
measures are fairly comparable. By using the well-scaled correlation ma-
trices, the quite different information loss measures give pretty consistent
results.

41

Noise Level Correlation Eigenvalues Eigenvectors

1% 0.000424 0.000435 0.000503
5% 0.000911 0.000935 0.001082
10% 0.001230 0.001262 0.001461
20% 0.001594 0.001636 0.001895

Table 5.2: Mixture Noise Correlation Information Loss

Noise Level Variance Covariance Eigenvalues Eigenvectors

1% 0.000532 0.008533 0.000576 0.000651
5% 0.001144 0.018353 0.001236 0.001404
10% 0.001545 0.024777 0.001667 0.001900
20% 0.002002 0.032120 0.002159 0.002469

Table 5.3: Scaled Mixture Noise Covariance Information Loss

In Table 5.3, we compare information loss measures between the covari-
ance matrix X x and the covariance matrix ¥z where Z’ is the scaled masked
data

! 1 1 T

Z \/1~|——dZ + (1 \/1—|-—d> ul

where p is the (sample) mean of the variables of Z and 1 is a vector of n
1’s. That is, Z’ has been scaled to have the same mean as X and also the
same covariance matrix Y. This rescaling to make >, ~ X x is seen in
the two scale information loss measures, variance (5.1) and eigenvalue (5.4),
compared with the analogous values in Table 5.1. As expected, the values
here are much smaller than those in Table 5.1 and they are still fairly close to
each other. Here we see more dramatically that the covariance measure (5.2)
has failed to respond proportionally to the rescaling. On the other hand,
since the eigenvector measure (5.5) is a measure of orientation not scale, it
has remained unchanged from Table 5.1 by the rescaling of the masked data.

In Table 5.4, we compare information-loss measures for the correlation
matrix of the scaled masked data. We see that the results are the same as
in Table 5.2 because the centered data only differ by a scale factor and this
scale factor is eliminated in the correlation matrix.

42

Noise Level Correlation Eigenvalues Eigenvectors

1% 0.000424 0.000435 0.000503
5% 0.000911 0.000935 0.001081
10% 0.001230 0.001262 0.001461
20% 0.001594 0.001636 0.001895

Table 5.4: Scaled Mixture Noise Correlation Information Loss

5.3 Conclusions

If we are trying to summarize changes between the second order statistics of
the raw and masked data sets in the form of some scalar measurements, there
seem to be two main dimensions to account for: scale and orientation. The
variance information loss measure (5.1) measures changes in scale. Another
scale measure is the covariance eigenvalue measure (5.4). We are somewhat
reassured by the empirical results that these two measures give quite similar
results, with the variance formula being simpler to compute. For a measure
of the orientation or variable interrelation change, it is interesting to note that
all of the other above scalar measures give similar results with the exception
of the covariance measure (5.2). Thus it appears that the correlation infor-
mation loss measure (5.3) is a well-scaled measure of this orientation change
and is more straightforward to compute that the eigenvector or eigenvalues
measures. We note again that the covariance measure (5.2) seems to be
both redundant to these other two and less stable due to scaling problems.

43

Chapter 6

Some Possible Modifications
and Extensions for Additive
Mixture Noise Application for
Data Masking

In reviewing Ramesh Dandekar’s [Dandekar| and Ruth Brand’s [Brand| pa-
pers, we found a few techniques that we could try to appropriate or adapt to
additive noise data masking. We can easily use a transformation to improve
the whiteness of the additive noise. We might want to consider transforma-
tions to approximate the distributions of the data.

6.1 Improving Noise Statistics

In the somewhat different context of target rank correlation matrices, Dan-
dekar uses a transformation to remove correlations. By doing the analogous
transformation, we can get the additive noise to conform more closely to
theoretical standards.

Let X be an n x m data array,

which we view as n independent samples of a random vector z, which has
an unknown mean p and covariance Y, which we approximate by the sample

mean
n
1
Hx = — E L
n <
=1

and sample covariance

n

Sx == (@i —px) (i — px) "

n <
=1
We wish to produce a masked data set Z by using additive noise
Z=X+dY

where YV is a masking array with mean 0 and covariance Xx. If we do this,
the resulting masked data set Z has mean py and covariance (1 + d) Xx. To
produce the masking array Y, we compute an array W

wy

wy

W =
wy
which is formed by sampling a random vector w with mean 0 and covariance

1
I, then multiplying by a square root X% of the covariance matrix ¥x,

to get

When we use our mixture model for random noise, the resulting sample
array W does not have exactly 0 mean and [covariance, nor can it be
expected to have. However, we can adjust the noise array so that it conforms
more exactly to the theoretical standards. If our given sample noise array
W has sample mean py, and sample covariance Xy, then we can “bleach”

45

the noise by subtracting the mean and transforming the covariance to get an
improved, whiter white noise array

1\ T
W= (W =) (23)
1
where X7, is a square root of the sample covariance
1 1N\T
n2 (zgv) .

(Note that W — py, is sloppy notation for subtracting the sample mean row
vector pl, from each row w! of the matrix W.) The resulting array W’ will
have more nearly mean 0 and covariance I, so that the colored noise array

Y =W (z%)T
- X

should also have more nearly mean 0 and sample covariance ¥x. Since
W already has mean near 0 and covariance near I, the changes are fairly
minor and there should be no problems with matrix conditioning or positive
definiteness in computing the square root.

As a computational note, it the square root is computed as a Cholesky
triangular factor, then multiplying by the inverse square root would be best
accomplished by back substitution. If one uses an eigenvalue decomposition,

Y =UDU"

where D is the diagonal matrix of eigenvalues and U is the orthogonal matrix
of eigenvectors, then the inverse square root is obtained from multiplying

Y5 =D ayT

where D% is the diagonal matrix of the reciprocals of the square roots of
the eigenvalues of 3. and

A preliminary test shows improvement in the Domingo-Ferrer informa-
tion loss statistics for the colored noise array Y compared to the original data
X. In this particular run, if we derive Y from our standard mixture noise

46

model, the variance and correlation measures are O (1073) and the covariance
measure is O (1072). When we compute the colored noise array Y from the
whitened noise array W', the Domingo-Ferrer information loss measure for
correlation is O (1071%) and for variance and covariance are O (10~1%). These
differences probably represent basic machine floating point error. Thus we
can make the additive noise array Y has nearly perfect first and second
order statistics. It remains to be seen if this in turn produces a similar im-
provement in the information loss statistics for the masked data set Z. More
interestingly, we should see if there is an improvement in the information loss
statistics for subpopulations. We can also check what effect the whitened
noise has on re-identification, but since the corrections to the original white
noise array W are presumably small, we expect the re-identification effects
to be slight.

6.1.1 Empirical Results

We tried the noise whitening transformation of the Kim-Winkler data to see
what effect it has on information loss measures. As intended from the direct
calculation, the transformation produces white noise W’ with virtually zero
mean and identity covariance. The SAS output yields means of magnitude
less than 6 x 107!7, variances exactly 1, and off-diagonal correlation term
magnitudes less than 3.5 x 107, When we color the noise to produce Y
and then obtain the masked data Z = X + dY, we compute the Domingo-
Ferrer information loss statistics. We summarize the results compared to
those for masked data without the extra whitening in tables below. In
general, the means show a good deal of improvement, while the second order
statistics are not greatly affected.

The tables summarize the effects of using the whiten random noise to
generate the masked data. The unscaled masked data is the result 7 =
X + dY, while the scaled data is the result of scaling the masked data by
v 1+ d to correct for the covariance inflation. In Table 6.1, we see that the
whitened data seems to result in generally slightly smaller perturbations of
the original data. At smaller noise levels, the reduction is greater than the
reduction resulting from the covariance scaling. As the noise level increases,
and thus the scale factor increases, the scaling effects are greater than the
whitening effects. We suppose that the reduction in the average standardized
data perturbation due to the whitening is primarily a result of improved
centering of the whitened data.

47

Unscaled Scaled
Standard Whitened Standard Whitened
1% 0.0604 0.0575 0.0601 0.0573
5% 0.1350 0.1286 0.1321 0.1260
10% 0.1909 0.1818 0.1830 0.1746
20% 0.2700 0.2572 0.2488 0.2377

Table 6.1: Average Standardized Data Difference

Unscaled Scaled
Standard Whitened Standard Whitened
1% 0.0022 4.604 x 10~ 0.0022 5.305 x 10~
5% 0.0049 1.625 x 1071 0.0049 4.404 x 10~
10% 0.0070 6.721 x 1071° 0.0070 4.113 x 10°1°
20% 0.0099 6.872 x 10715 0.0099 3.239 x 10715

Table 6.2: Average Proportional Mean Difference

In any event, there is certainly improved centering for the whitened data,
as we can see from Table 6.2. While the deviations from the mean are
small in the standard data, they have been reduced to virtually nothing in
the whitened data. We also note that while the mean deviations increase
with increasing noise levels for the standard data, they change irregularly
for increasing noise or for changing from unscaled to scaled for the whitened
data. This appears to indicate that the whitened data deviations from the
mean are attributable to machine noise.

The remaining tables show that the improvement due to whitening is
less significant for the second order statistics. In Table 6.3 we see that the
whitened masked data produces a very small improvement in the average
proportional variance error, much smaller than that produced by the covari-
ance inflation scaling. In Table 6.4 we see that the average proportional
covariance error increases somewhat for the whitened masked noise. This
mostly supports the assertion that this measure of information loss is poorly
scaled as well as being redundant. When we return to the properly scaled
average correlation difference, we see in Table 6.5 that the whitened data
does result in smaller correlation errors, although again these reductions are
quite small.

48

Unscaled Scaled
Standard Whitened Standard Whitened
1% 0.0102 0.0098 0.0007 0.0006
5% 0.0505 0.0497 0.0015 0.0013
10% 0.1007 0.0995 0.0020 0.0017
20% 0.2010 0.1993 0.0026 0.0022

Table 6.3: Average Proportional Variance Difference

Unscaled Scaled
Standard Whitened Standard Whitened
1% 0.0142 0.0166 0.0081 0.0088
5% 0.0563 0.0634 0.0180 0.0190
10% 0.1056 0.1188 0.0248 0.0257
20% 0.2013 0.2266 0.0332 0.0333

Table 6.4: Average Proportional Covariance Difference

Unscaled Scaled
Standard Whitened Standard Whitened
1% 0.00043 0.00041 0.00043 0.00041
5% 0.00093 0.00089 0.00093 0.00089
10% 0.00126 0.00120 0.00126 0.00120
20% 0.00166 0.00156 0.00166 0.00156

Table 6.5: Average Correlation Difference

49

6.2 Data Probability Distributions

In Dandekar’s method and in Sullivan’s method as described in Brand’s pa-
per, efforts are made to try to produce masked data where the variables
maintain the same probability distribution as those in the raw data. Pre-
sumably masked data sets can be considered more analytically valid when
they replicate the original distribution than when they just preserve the first
and second central moments. On the other hand, it is not clear that these
methods preserve distributions for arbitrary subpopulations.

As long as we use a method of additive noise, we cannot presume that we
are preserving the original data distributions. If the raw data X is normally
distributed and the additive noise Y is normally distributed, then the masked
data Z = X + dY will be normally distributed as well. However, if Y has a
mixture distribution, as in a mixture of normals, then it is hard to say what
distribution the resulting masked data Z has. More importantly, the raw
data X may very likely not be normally distributed. Real life data, such
as the Kim-Winkler data, can be highly skewed with large isolated outliers.
If we were to add noise Y whose distribution resembles that of X, then the
resulting masked data set Z may be distributed reasonably similarly to X
and the re-identification masking might be more effective as well.

The first step is to remove correlations between the variables of X. Thus
we can compute the sample covariance matrix of X,

n

Yx =— Z (zi — px) (wi — MX)T

Lt
1
and then compute a square root X3 of the sample covariance. We can then
get a scaled, centered, and decoupled data set

X = (X - (51)

that should have mean 0 and covariance I. Since the variables of X’ are now
uncorrelated, we can consider the (empirical) distributions of each variable
separately.

For each variable, we find an empirical distribution. There are probably
a lot of ways to do this. At the most basic level, an empirical distribution
could be a sorted list of the values of the variable. In the case of repeated
values especially, a cumulative sum of the number of times the value (or

50

less) occurs is also recorded. Then a measure of Pr (X! < «a) can be just
the proportion of times that such values have occurred. For intermediate
values of a;, one can interpolate, using either linear interpolation or perhaps
a smoother higher order interpolation. For the simulation, one could use
a uniform random variable to generate a cumulative probability value p,
then use the interpolated table to compute an inverse distribution value «a
satisfying Pr (X} < a) = p. In this manner, we can independently fill up a
table W where the columns represent random samples from the individual
variable empirical probability distributions. We can then get a masked data
set Z by computing

Z = (X' +dW) (ZX)T + .

Since X’ and W should both have mean 0, Z should have mean uy. If X’
and WW are independent, we expect that the covariance of Z should be about
(1+ d*) Xx so that correlations should be nearly preserved. Meanwhile, the
distribution of Z should be nearer to the distribution of X than if W were
generated by some unrelated distribution. In particular, it the distribution
of X is characterized by several large outliers that skew the distribution, then
the simulation may create some new outliers for W which could make some
re-identifications less certain.

ol

Bibliography

[Brand|

[Dandekar]

[Domingo-Ferrer|

[Kim86]

[Kim90]

[Kim95]

Brand, Ruth. “Micrordata Protection through Noise
Addition.” Statistical Data Confidentiality (J. Domingo-
Ferrer, Ed.). Lecture Notes on Artificial Intelligence.
Springer-Verlag. New York, (2002, to appear).

Dandekar, Ramesh, Michael Cohen, and Nancy Kirk-
endall. “Sensitive Micro Data Protection Using Latin Hy-
percube Sampling Technique.” Statistical Data Confiden-
tiality (J. Domingo-Ferrer, Ed.). Lecture Notes on Ar-
tificial Intelligence. Springer-Verlag. New York, (2002, to

appear).

Domingo-Ferrer, J., J. Mateo-Sanz and Vincenc Torra.
“Comparing SDC Methods for Microdata on the Basis
of Information Loss and Disclosure Risk.” Proceedings of
ETK-NTTS . (2001, to appear).

Kim, J. J. “A Method for Limiting Disclosure in Microdata
Based on Random Noise and Transformation.” American

Statistical Association, Proceedings of the Section on Sur-
vey Research Methods, (1986) 303-308.

Kim, J. J. “Subdomain Estimation for the Masked Data.”
American Statistical Association, Proceedings of the Sec-
tion on Survey Research Methods, (1990) 456-461.

Kim, J. J. and W. E. Winkler. “Masking Microdata Files.”
American Statistical Association, Proceedings of the Sec-
tion on Survey Research Methods, (1995) 114-119.

52

[Roque]

[Winkler94|

[Winkler95|

[Winkler9s|

[Yancey]

Roque, G. M. , Masking Microdata Files with Mix-
tures of Multivariate Normal Distributions, Unpublished
Ph.D. dissertation, Department of Statistics, University of
California—Riverside (2000).

Winkler, W. E. “Advanced Methods for Record Linkage.”
American Statistical Association, Proceedings of the Sec-
tion on Survey Research Methods, (1994) 467-472.

Winkler, W. E. “Matching and Record Linkage” in B. G.
Cox (Ed.) Business Survey Methods, New York: J. Wiley,
(1995) 355384.

Winkler, W. E. “Re-identification Methods for Evaluat-
ing the Confidentiality of Analytically Valid Microdata.”
Research in Official Statistics, 1, (1998) 87104

Yancey, W. E., W. E. Winkler, and Robert Creecy. “Dis-
closure Risk Assessment in Perturbative Microdata Protec-
tion via Record Linkage”, Statistical Data Confidentiality
(J. Domingo-Ferrer, Ed.). Lecture Notes on Artificial In-
telligence. Springer-Verlag. New York, 2002 (to appear).

53

Appendix A
SAS Programs

A.1 SAS Program to Create and Evaluate
Mixture Noise Masked Data

The following SAS program uses PROC IML to compute data sets masked
by mixture model additive noise. It reads in the specified raw data set and
computes mean and covariance statistics. It computes the square root of the
covariance matrix, using either the eigenvalue of the Cholesky decomposition.
It then computes a data set of “white” mixture model noise as described
in Chapter 2 and an array of “colored” mixture noise using the covariance
square root, checking mean and covariance statistics. It adds the colored
noise to the raw data to produce a masked data set. It then computes
information loss statistics using formulas derived from Domingo-Ferrer. It
then computes a rescaled masked data set to get the masked data covariance
to agree with the original data covariance, and then checks the information
loss statistics of the scaled masked data set. It also computes a “whitened”
mixture noise data set as proposed in Chapter 6, masks the data using this
noise, and computes the information loss statistics for both the unscaled and
scaled masked data. The program also saves the masked data set to a flat
file.

/* William E. Yancey, Statistics Research Division */

/* SAS Program to produce data files masked by mixture noise
and compute data statistics */

/* Output data statisistcs include Domingo-Ferrer-like

o4

/%

/%

/%

/%

information loss summary statistics */

Computes and outputs masked data for both additive noise
model and rescaled additive noise model
to compensate for covariance inflation */

Current version (11/15/01) also uses translation and square
root transformation to ’’whiten’’ random noise mixture and
compare results */

Computations carried out using SAS Proc IML to do matrix
calculations */

Read in raw data file x/

data kimwin;

infile ’/home/bwinkler/psa/jk2001/srawid4.dat’;
input @1 seq 6. @7 tot_inc 8. @15 adj_gr 8. 023 wage 7.

@30 tax_int 7. @37 divid 7. @44 rent 7. @51 non_int 7.
058 ssn_inc 6. @64 ret_type 1. @70 agec 2. @73 race 1.
Q75 sex 1. Q@77 cpswage 8. ©@86 cpsprop 8. @95 cpsagi 8.;

proc iml;

/* Create matrix with raw numerical data and compute mean,

covariance, correlation */

use kimwin;
read all var {tot_inc adj_gr wage tax_int divid rent non_int

ssn_inc cpswage cpsprop cpsagi seq ret_type agec race sexl;

X = tot_inc || adj_gr || wage || tax_int || divid || rent ||
non_int || ssn_inc || cpswage || cpsprop || cpsagi;

nrec = nrow(X);

nvar = ncol(X);

meanX = X[+,]/nrec;
print meanX ’’Mean of raw data’’;

X0 = X - repeat(meanX,nrec,1);

)

covX (t(X0) * X0)/nrec;

varX = vecdiag(covX);

print varX ’’Variance of raw data’’;

siginvX = diag(1/sqrt(varX));

corX = siginvX*covX*siginvX;

print corX ’’Correlation of raw data’’;

chol = root(covX); */ /* Cholesky factor */

call eigen(eigs,U,covX);

eigsqr = sqrt(eigs);

print eigsqr ’’The square roots of the covariance eigenvalues’’;

print U ’’0Orthonormal eigenvector transform’’;

Seeds = {895907 234789 684111 905241 380625 746913 435673 502462
265362 979324 846265 114473 988584 940020 414342 271842
314161 557215 664901 532861 606512 985420} ;

Useed = 646928;

sig2 = 0.025; /* Component distortion factor (sigma) */

d = 0.01; /* Masked data covariance dilation term */

dsd = sqrt(d);

MixN = J(nrec,nvar,0); /* Matrix to hold uncorrelated mixture noise */

MixNew = J(nrec,nvar,0); /* Matrix to hold whitened mixture noise */

56

Y = J(nrec, nvar, 0); /* Matrix to hold colored mixture noise */

Ynew = J(nrec,nvar,0); /* Matrix to hold colored mixture noise from
whitened noise */

/* Generate mixture noise */
do i =1 to nrec;
do j =1 to nvar;
choice = uniform(Useed);
if (choice < 0.5) then do;
w = normal (Seeds[1,j]);
MixN[i,j] = sqrt(sig2)*w + sqrt(1l - sig2);
end;
else do;
w = normal (Seeds[2,j]);
MixN[i,j] = sqrt(sig2)*w - sqrt(l - sig2);

end;
end;

/* Y[i,] = MixN[i,]*chol; x*/
Y[i,] = MixN[i,]*diag(eigsqr)*t(U);
end;

/* Test noise statistics *x/

57

meanMix = MixN[+,]/nrec;

print meanMix ’’Mean of pure mixed noise’’;
MixNO = MixN - repeat(meanMix,nrec,1);
covMix = (t(MixNO)*MixNO) /nrec;

call eigen(eignois,Unois,covMix);

eignsqr = sqrt(eignois);

print eignsqr ’’The square roots of the covariance eigenvalues’’;
Dinv = diag(1/eignsqr);

varMix = vecdiag(covMix) ;

print varMix ’’Variance of mixed noise’’;
print covMix ’’Covariance of mixed noise’’;
siginvMx = diag(1/sqrt(varMix));

corMix = siginvMx*covMix*siginvMx;

print corMix ’’Correlation of mixed noise’’;
meanY = Y[+,]/nrec;

print meanY ’’Mean of colored noise’’;

YO = Y - repeat(meanY,nrec,1);

covyY (t (YO)*YO0) /nrec;

varY = vecdiag(covY);

58

siginvY = diag(1/sqrt(varY));

corY = siginvY*covY*siginvY;

print corY ’’Correlation of colored noise’’;
Z = X + dsd#Y; /* Compute masked data
/* Test masked data statisitcs */

meanZ = Z[+,]/nrec;

print meanZ ’’Mean of masked data’’;

Z0 = Z - repeat(meanZ,nrec,1);

covZ (t(Z0)*Z0) /nrec;

varZ = vecdiag(covZ);

print varZ ’’Variance of masked data’’;
siginvZ = diag(1/sqrt(varz));

corZ = siginvZ*covZ*siginvZ;

print corZ ’’Correlation of masked data’’;

/* Comupte Domingo measures for mixed data

Xdiff = abs(X - Z);
Xscal = 0.5#(abs(X) + abs(Z));
Xscal = Xscal + (Xscal = 0);

Xcmp = Xdiff/Xscal;

99

*/

normX = Xcmpl[:];
print normX ’’Average proportional element difference’’;
Xscal = repeat(t(sqrt(vecdiag(covX))) ,nrec,1);
Xcmp = Xdiff/Xscal;
normX = Xcmp[:]/sqrt(2);
print normX ’’Average standardized difference from masked data’’;
meandiff = abs(meanX - meanZ);
meancmp = meandiff/abs(meanX) ;
normmean = meancmpl[:];
print normmean ’’Average proportional mean difference’’;
vardiff = abs(varX - varZ);
varcmp = vardiff/abs(varX);
normvar = varcmpl[:];
print normvar ’’Average proportional variance difference’’;
normcov = 0;
do i =1 to nvar;

do j = 1 to nvar;

normcov = normcov + abs(covX[i,j] - covZ[i,j])/abs(covX[i,jl);

end;

60

end;
normcov = normcov/((nvarx(nvar + 1))/2);
print normcov ’’Average proportional covariance difference’’;
normcor = 0;
do i =1 to nvar;
do j = (i+1) to nvar;
normcor = normcor + abs(corX[i,j]l - corZl[i,jl);
end;
end;
normcor = normcor/((nvar*(nvar - 1))/2);
print normcor ’’Average correlation difference’’;
/* Compute masked data with rescaled covariance */
Zpr = (1/sqrt(1 + d))#Z0 + repeat(meanZ,nrec,1);
/* Compute statistics for rescaled masked data */
meanZpr = Zpr[+,]/nrec;
print meanZpr ’’Mean of rescaled masked data’’;
ZprO = Zpr - repeat(meanZpr,nrec,1);
covZpr = (t(Zpr0)*Zpr0)/nrec;

print covZpr ’’Covariance of rescaled masked data’’;

61

varZpr = vecdiag(covZpr);

print varZpr ’’Variance of rescaled masked data’’;

siginvZp = diag(1/sqrt(varZpr));

corZpr = siginvZp*covZpr*siginvZp;

print corZpr ’’Correlation of rescaled masked data’’;

/* Compute Domingo measures for rescaled masked data */

Xdiffpr = abs(X - Zpr);

Xscal = 0.5#(abs(X) + abs(Zpr));

Xscal = Xscal + (Xscal = 0);

Xcmppr = Xdiffpr/Xscal;

normXpr = Xcmppr[:];

print normXpr ’’Average proportional element difference from scaled data’’;
Xscal = repeat(t(sqrt(vecdiag(covX))) ,nrec,1);

Xcmppr = Xdiffpr/Xscal;

normX = Xcmppr[:]/sqrt(2);

print normX ’’Average standardized difference from scaled masked data’’;

meandifp = abs(meanX - meanZpr);

meancmpr = meandifp/abs(meanX) ;

normmeap = meancmprl[:];

62

print normmeap ’’Average proportional mean difference from scaled data’’;

vardiffp = abs(varX - varZpr);

varcmppr = vardiffp/abs(varX);

normvarp = varcmpprl[:];
print normvarp ’’Average proportional variance difference from scaled data’’;
normcovp = 0;
do i =1 to nvar;
do j = i to nvar;
normcovp = normcovp + abs(covX[i,j] - covZprli,j])/abs(covX[i,jl);
end;
end;
normcovp = normcovp/((nvar*(nvar + 1))/2);
print normcovp ’’Average proportional covariance difference from scaled data
normcorp = 0;
do i =1 to nvar;
do j = (i+1) to nvar;
normcorp = normcorp + abs(corX[i,j] - corZprli,jl);
end;

end;

63

normcorp = normcorp/((nvar*(nvar - 1))/2);
print normcorp ’’Average correlation difference from scaled data’’;
do i =1 to nrec;
MixNew[i,] = (MixN[i,] - meanMix)*Unois*Dinv;
Ynew[i,] = MixNew[i,]*diag(eigsqr)*t(U);
end;
/* Test noise statistics x/
meanMix = MixNew[+,]/nrec;
print meanMix ’’Mean of pure mixed noise’’;
MixNO = MixNew - repeat(meanMix,nrec,1);
covMix = (t(MixNO)*MixNO)/nrec;
call eigen(eignois,Unois,covMix) ;
eignsqr = sqrt(eignois);
print eignsqr °’’The square roots of the covariance eigenvalues’’;
Dinv = diag(1/eignsqr);
varMix = vecdiag(covMix);
print varMix ’’Variance of mixed noise’’;
print covMix ’’Covariance of mixed noise’’;

siginvMx = diag(1l/sqrt(varMix));

64

corMix = siginvMx*covMix*siginvMx;

print corMix ’’Correlation of mixed noise’’;
meanY = Ynew[+,]/nrec;

print meanY ’’Mean of colored noise’’;

YO0 = Ynew - repeat(meanY,nrec,1);

covY (t(Y0)*YO0) /nrec;

varY = vecdiag(covY);

siginvY = diag(1/sqrt(varY));

corY = siginvY*covY*siginvY;

print corY ’’Correlation of colored noise’’;

Z = X + dsd#Ynew; /* Compute masked data
/* Test masked data statisitcs */

meanZ = Z[+,]/nrec;

print meanZ ’’Mean of masked data’’;

Z0 = Z - repeat(meanZ,nrec,1);

covZ (£t (Z0)*Z0) /nrec;

varZ = vecdiag(covZ);
print varZ ’’Variance of masked data’’;

siginvZ = diag(1/sqrt(varZ));

65

*/

corZ = siginvZ*covZ*siginvZ;

print corZ ’’Correlation of masked data’’;

/* Comupte Domingo measures for mixed data */

Xdiff = abs(X - Z);

Xscal = 0.5#(abs(X) + abs(Z));

Xscal = Xscal + (Xscal = 0);

Xcmp = Xdiff/Xscal;

normX = Xcmpl[:];

print normX ’’Average proportional element difference’’;
Xscal = repeat(t(sqrt(vecdiag(covX))) ,nrec,1);

Xcmp = Xdiff/Xscal;

normX = Xcmp[:]/sqrt(2);

print normX ’’Average standardized difference from masked data’’;
meandiff = abs(meanX - meanZ);

meancmp = meandiff/abs(meanX) ;

normmean = meancmpl[:];

print normmean ’’Average proportional mean difference’’;
vardiff = abs(varX - varZ);

varcmp = vardiff/abs(varX);

66

normvar = varcmpl[:];
print normvar ’’Average proportional variance difference’’;
normcov = 0;
do i =1 to nvar;
do j = i to nvar;
normcov = normcov + abs(covX[i,j] - covZ[i,jl)/abs(covX[i,jl);
end;
end;
normcov = normcov/((nvarx(nvar + 1))/2);
print normcov ’’Average proportional covariance difference’’;
normcor = 0;
do i = 1 to nvar;
do j = (i+1) to nvar;
normcor = normcor + abs(corX[i,j] - corZ[i,jl);
end;
end;
normcor = normcor/((nvarx(nvar - 1))/2);
print normcor ’’Average correlation difference’’;

/* Compute masked data with rescaled covariance */

67

Zpr = (1/sqrt(1 + d))#Z0 + repeat(meanZ,nrec,1);

/* Compute statistics for rescaled masked data */
meanZpr = Zpr[+,]/nrec;

print meanZpr ’’Mean of rescaled masked data’’;

Zpr0 = Zpr - repeat(meanZpr,nrec,1);

covZpr = (t(Zpr0)*Zpr0)/nrec;

print covZpr ’’Covariance of rescaled masked data’’;
varZpr = vecdiag(covZpr);

print varZpr ’’Variance of rescaled masked data’’;
siginvZp = diag(1/sqrt(varZpr));

corZpr = siginvZp*covZpr*siginvZp;

print corZpr ’’Correlation of rescaled masked data’’;
/* Compute Domingo measures for rescaled masked data */

Xdiffpr = abs(X - Zpr);

Xscal = 0.5#(abs(X) + abs(Zpr));

Xscal = Xscal + (Xscal = 0);
Xcmppr = Xdiffpr/Xscal;
normXpr = Xcmpprl[:];

print normXpr ’’Average proportional element difference from scaled data’’;

68

Xscal = repeat(t(sqrt(vecdiag(covX))),nrec,1);
Xcmppr = Xdiffpr/Xscal;
normX = Xcmppr[:]/sqrt(2);

print normX ’’Average standardized difference from scaled masked data’’;

meandifp = abs(meanX - meanZpr) ;

meancmpr = meandifp/abs(meanX) ;

normmeap = meancmprl[:];

print normmeap ’’Average proportional mean difference from scaled data’’;

vardiffp = abs(varX - varZpr);

varcmppr = vardiffp/abs(varX);

normvarp = varcmpprl[:];
print normvarp ’’Average proportional variance difference from scaled data’’;
normcovp = 0;
do i =1 to nvar;

do j = i to nvar;

normcovp = normcovp + abs(covX[i,j] - covZprli,jl)/abs(covX[i,jl);

end;

end;

normcovp = normcovp/((nvar*(nvar + 1))/2);

69

print normcovp ’’Average proportional covariance difference from scaled data
normcorp = 0;
do i =1 to nvar;

do j = (i+1) to nvar;

normcorp = normcorp + abs(corX[i,j] - corZprl[i,jl);

end;
end;
normcorp = normcorp/((nvar*(nvar - 1))/2);
print normcorp ’’Average correlation difference from scaled data’’;
/* Output the masked data sets */

filename outl ’/home/yance003/noise/mixnoise/mixw01.dat’;
filename out2 ’/home/yance003/noise/mixnoise/mixwOlpr.dat’;

file outil;
do i =1 to nrec;
put @1 (seqlil) 6. @7 (Z[i,1]) 8. @15 (Z[i,2]) 8.

©23 (z[i,3]) 7. @30 (Z[i,4]) 7. @37 (Z[i,5]) 7.

©44 (z[i,e6]) 7. @51 (Z[i,7]) 7. @58 (Z[i,8]) 6.

064 (ret_typeli]) 1. @70 (agec[i]) 2. @73 (race[i]) 1.
@75 (sex[i]) 1. @77 (Z[i,9]) 8. @86 (Z[i,10]) 8.

@95 (zZ[i,11]1) 8.;

end;

close outil;

70

file out2;
do i =1 to nrec;

put @1 (seql[il) 6. @7 (Zpr([i,1]) 8. @15 (Zpr[i,2]) 8.
@23 (Zprli,3]) 7. @30 (Zprli,4l) 7. @37 (Zprli,51) 7.
@44 (Zprli,6]) 7. @51 (Zprli,7]) 7. @58 (Zprli,8l) 6.
064 (ret_typel[i]) 1. @70 (agec[i]) 2. @73 (race[i]) 1.
Q@75 (sex[i]) 1. @77 (Zpr[i,9]) 8. @86 (Zpr[i,10]) 8.
@95 (Zprl[i,11]) 8.;

end;
close out2;
quit;

run;

A.2 SAS Program to Evaluate Subpopulation
Statistics for Mixture Model Masked Mi-
crodata

This SAS program reads in a raw data set and unscaled and scaled masked
data sets as computed by the previous program and selects a specified sub-
population from each set. The program then compares mean and covariance
statistics for the data sets and computes the information loss statistics. The
means and covariances for the subpopulation are corrected using the formuas
discussed in Chapter 3.

/* William E. Yancey, Statistical Research Division */
/* Sample program to test subpopulation of masked data for
Domingo-Ferrar type information loss statistics
for masked data produced form additive mixture noise and
rescaled masked data for covariance correction */

71

/* Additive noise masked data subpopulation means and covariance
corrections based on Jay Kim’s ’’Subpopulation for Masked
Data’’ papter */

TITLE® Data Subset ret_type = 4, Masking = 0.20;

data kimwin;
infile ’/home/bwinkler/psa/jk2001/srawid4.dat’;
input @1 seq 6. @7 tot_inc 8. @15 adj_gr 8. 023 wage 7.
Q@30 tax_int 7. @37 divid 7. ©44 rent 7. @51 non_int 7.
@58 ssn_inc 6. @64 ret_type 1. @70 agec 2. Q@73 race 1.
Q75 sex 1. Q77 cpswage 8. @86 cpsprop 8. @95 cpsagi 8.;

data kimwins;
set kimwin;
if (ret_type = 4);

data mask;
infile ’/home/yance003/noise/mixnoise/mixw20.dat’;
input @1 seq 6. @7 tot_inc 8. @15 adj_gr 8. 023 wage 7.
@30 tax_int 7. @37 divid 7. @44 rent 7. @51 non_int 7.
@58 ssn_inc 6. @64 ret_type 1. @70 agec 2. Q@73 race 1.
Q75 sex 1. Q77 cpswage 8. @86 cpsprop 8. @95 cpsagi 8.;

data masks;
set mask;
if (ret_type = 4);

data maskpr;
infile ’/home/yance003/noise/mixnoise/mixw20pr.dat’;
input @1 seq 6. @7 tot_inc 8. @15 adj_gr 8. 023 wage 7.
@30 tax_int 7. @37 divid 7. @44 rent 7. @51 non_int 7.
@58 ssn_inc 6. @64 ret_type 1. Q@70 agec 2. Q@73 race 1.
Q75 sex 1. Q@77 cpswage 8. @86 cpsprop 8. @95 cpsagi 8.;

72

data maskprs;
set maskpr;
if (ret_type = 4);

proc iml;
d = 0.20;
use kimwin;

read all var {tot_inc adj_gr wage tax_int divid rent non_int
ssn_inc cpswage cpsprop cpsagi seq ret_type agec race sex};

X = tot_inc || adj_gr || wage || tax_int || divid || rent ||
non_int || ssn_inc;

nrec = nrow(X);

nvar = ncol(X);

print nrec ’’Number of data records’’;

meanX = X[+,]/nrec;

print meanX ’’Mean of raw data’’;

X0 = X - repeat(meanX,nrec,1);

covX = (t(X0) * X0)/nrec;

print covX ’’Covariance of raw data’’;
varX = vecdiag(covX);

print varX ’’Variance of raw data’’;

sdX = sqrt(varX);

73

print sdX ’’Standard deviations of raw data’’;

siginvX = diag(1/sqrt(varX));

corX = siginvX*covX*siginvX;

print corX ’’Correlation of raw data’’;

use kimwins;

read all var {tot_inc adj_gr wage tax_int divid rent non_int

ssn_inc cpswage cpsprop cpsagi seq ret_type agec race sex’};

Xs = tot_inc || adj_gr || wage || tax_int || divid || rent ||
non_int || ssn_inc;

nrecsu = nrow(Xs);

print nrecsu ’’Number of data subset records’’;
meanXs = Xs[+,]/nrecsu;

print meanXs ’’Mean of raw data subset’’;

Xs0 = Xs - repeat(meanXs,nrecsu,1);

covXs = (t(Xs0) * Xs0)/nrecsu;

print covXs ’’Covariance of raw data subset’’;
varXs = vecdiag(covXs);

print varXs ’’Variance of raw data subset’’;
sdXs = sqrt(varXs);

print sdXs ’’Standard deviations of raw data subset’’;
siginvXs = diag(1/sqrt(varXs));

74

corXs = siginvXs*covXs*siginvXs;

print corXs ’’Correlation of raw data subset’’;

use mask;

read all var {tot_inc adj_gr wage tax_int divid rent non_int

ssn_inc cpswage cpsprop cpsagi seq ret_type agec race sexl;

Z = tot_inc || adj_gr || wage || tax_int || divid || rent ||
non_int || ssn_inc;

nrec = nrow(Z);

meanZ = Z[+,]/nrec;

print meanZ ’’Mean of masked data’’;

Z0 = Z - repeat(meanZ,nrec,1);

covZ = (t(Z0) * ZO)/nrec;

print covZ ’’Covariance of masked data’’;
varZ = vecdiag(covZ);

print varZ ’’Variance of masked data’’;
siginvZ = diag(1/sqrt(varZ));

corZ = siginvZ*covZ*siginvZ;

print corZ ’’Correlation of masked data’’;
use masks;

read all var {tot_inc adj_gr wage tax_int divid rent non_int
ssn_inc cpswage cpsprop cpsagi seq ret_type agec race sex};

I6)

Zs = tot_inc || adj_gr || wage || tax_int || divid || rent ||
non_int || ssn_inc;

nrecsu = nrow(Zs);

meanZs = Zs[+,]/nrecsu;

print meanZs ’’Mean of masked data’’;

Zs0 = Zs - repeat(meanZs,nrecsu,l);

covZs = (t(Zs0) * Zs0)/nrecsu;

print covZs ’’Covariance of masked data subset’’;
covZsc = covZs - (d/(d + 1))#covZ;

print covZsc ’’Corrected covariance of masked data subset’’;
varZsc = vecdiag(covZsc);

print varZsc ’’Corrected Variance of masked data’’;
siginvZs = diag(1l/sqrt(varZsc));

corZsc = siginvZs*covZsc*siginvZs;

print corZsc ’’Corrected Correlation of masked data’’;

use maskpr;

read all var {tot_inc adj_gr wage tax_int divid rent non_int
ssn_inc cpswage cpsprop cpsagi seq ret_type agec race sex};

Zpr = tot_inc

|l adj_gr || wage || tax_int || divid || rent ||
non_int ||

ssn_inc;
nrec = nrow(Zpr);

76

meanZpr = Zpr[+,]/nrec;

print meanZpr ’’Mean of masked scaled data’’;

ZprO = Zpr - repeat(meanZpr,nrec,1);

covZpr = (t(Zpr0) * ZprO)/nrec;

print covZpr ’’Covariance of masked scaled data’’;
varZpr = vecdiag(covZpr);

print varZpr ’’Variance of masked scaled data’’;
siginvZp = diag(1/sqrt(varZpr));

corZpr = siginvZp*covZpr*siginvZp;

print corZpr ’’Correlation of masked scaled data’’;
use maskprs;

read all var {tot_inc adj_gr wage tax_int divid rent non_int

ssn_inc cpswage cpsprop cpsagi seq ret_type agec race sexl;

Zprs = tot_inc || adj_gr || wage || tax_int || divid || rent ||
non_int || ssn_inc;

nrecsu = nrow(Zprs);

meanZprs = Zprs[+,]/nrecsu;

print meanZprs ’’Mean of masked scaled data subset’’;
menZprsc = sqrt(l + d)#meanZprs - (sqrt(1 + d) - 1)#meanZpr;

print menZprsc ’’Corrected Mean of masked scaled data subset’’;

7

ZprsO = Zprs - repeat(meanZprs,nrecsu,l);

covZprs = (t(Zprs0) * ZprsO)/nrecsu;

print covZprs ’’Covariance of masked scaled data subset’’;
covZprsc = (1 + d)#covZprs - d#covZpr;

print covZprsc ’’Corrected covariance of masked scaled data
subset’’;

varZprsc = vecdiag(covZprsc);

print varZprsc ’’Corrected Variance of masked scaled data
subset’’;

siginvZp = diag(1/sqrt(varZprsc));

corZprsc = siginvZp*covZprsc*siginvZp;

print corZprsc ’’Corrected Correlation of masked scaled data
subset’’;

/* Information measures */

Xdiff = abs(X - Z);
Xscal = 0.5#(abs(X) + abs(Z));
Xscal = Xscal + (Xscal = 0);

Xcmp = Xdiff/Xscal;

normX = Xcmpl[:];

print normX ’’Average proportional element difference from masked

data’’;

78

Xscal = repeat(t(sqrt(vecdiag(covX))) ,nrec,1);

Xcmp = Xdiff/Xscal;

normX = Xcmp[:]/sqrt(2);

print normX ’’Average standardized difference from masked data’’;
meandiff = abs(meanX - meanZ);

meancmp = meandiff/abs(meanX) ;

print meancmp °’’Mean proportional errors’’;

normmean = meancmpl[:];

print normmean ’’Average proportional mean difference from masked
data’’;

vardiff = abs(varX - varZ);
varcmp = vardiff/abs(varX);
normvar = varcmp[:];

print normvar ’’Average proportional variance difference from
masked data’’;

coverr = abs(covX - covZ)/abs(covX);

print coverr ’’Covariance proportional errors’’;
normcov = 0;

do i =1 to nvar;

do j = i to nvar;

79

normcov = normcov + abs(covX[i,j] - covZ[i,jl)/abs(covX[i,jl);
end;
end;
ncovs = (nvarx(nvar + 1))/2;
normcov = normcov/ncovs;

print normcov ’’Average proportional covariance difference from
masked data’’;

normcor = 0;
do i =1 to nvar;

do j = (i+1) to nvar;

normcor = normcor + abs(corX[i,j]l - corZl[i,jl);

end;
end;
ncors = (nvarx(nvar - 1))/2;
Nnormcor = Normcor/ncors;
print normcor ’’Average correlation difference from masked data’’;

Xdiffpr = abs(X - Zpr);

Xscal = 0.5#(abs(X) + abs(Zpr));

Xscal = Xscal + (Xscal = 0);
Xcmppr = Xdiffpr/Xscal;

80

normXpr = Xcmppr[:];

print normXpr ’’Average proportional element difference from scaled
masked data’’;

Xscal = repeat(t(sqrt(vecdiag(covX))),nrec,1);
Xcmppr = Xdiffpr/Xscal;
normX = Xcmpprl[:]/sqrt(2);

print normX ’’Average standardized difference from scaled masked
data’’;

meandifp = abs(meanX - meanZpr);

meancmpr = meandifp/abs(meanX) ;

normmeap = meancmprl[:];

print normmeap ’’Average proportional mean difference from scaled
masked data’’;

vardiffp = abs(varX - varZpr);

varcmppr = vardiffp/abs(varX);

normvarp = varcmpprl[:];

print normvarp ’’Average proportional variance difference from
scaled masked data’’;

normcovp = 0;
do i =1 to nvar;
do j = i to nvar;

81

normcovp = normcovp + abs(covX[i,j] - covZprli,j])/abs(covX[i,jl);
end;
end;
NOYMCOVp = NOrmcovp/ncovs;

print normcovp ’’Average proportional covariance difference from
scaled masked data’’;

normcorp = 0;
do i =1 to nvar;
do j = (i+1) to nvar;
normcorp = normcorp + abs(corX[i,j] - corZprl[i,jl);
end;
end;
NOYMCOrp = NOrmcorp/ncors;

print normcorp ’’Average correlation difference from scaled masked

data’’;
Xdiff = abs(Xs - Zs);
Xscal = 0.5#(abs(Xs) + abs(Zs));
Xscal = Xscal + (Xscal = 0);

Xcmp = Xdiff/Xscal;
normX = Xcmp[:];

82

print normX ’’Average proportional element difference from masked
data subset’’;

Xscal = repeat(t(sqrt(vecdiag(covXs))) ,nrecsu,1);
Xcmp = Xdiff/Xscal;
normX = Xcmp[:]/sqrt(2);

print normX ’’Average standardized difference from masked data
subset’’;

meandiff = abs(meanXs - meanZs);

meancmp = meandiff/abs(meanXs);

print meancmp ’’Subset proportional mean errors’’;
normmean = meancmp[:];

print normmean ’’Average proportional mean difference from masked
data subset’’;

vardiff = abs(varXs - varZsc);
varcmp = vardiff/abs(varXs);
normvar = varcmp[:];

print normvar ’’Average proportional variance difference from
masked data subset’’;

coverrs = abs(covXs - covZsc)/abs(covXs);
print coverrs ’’Subset coveriance proportional errors’’;
normcov = O;

83

do i =1 to nvar;
do j = i to nvar;
normcov = normcov + abs(covXs[i,j] - covZscli,j])/abs(covXsli,jl);
end;
end;
Nnormcov = normcov/ncovs;

print normcov ’’Average proportional covariance difference from
masked data subset’’;

normcor = 0;
do i =1 to nvar;
do j = (i+1) to nvar;
normcor = normcor + abs(corXs[i,j] - corZscli,jl);
end;
end;
Nnormcor = Normcor/ncors;

print normcor ’’Average correlation difference from masked data
subset’’;

Xdiffpr = abs(Xs - Zprs);

Xscal = 0.5#(abs(Xs) + abs(Zprs));

Xscal = Xscal + (Xscal = 0);

84

Xcmppr = Xdiffpr/Xscal;
normXpr = Xcmpprl[:];

print normXpr ’’Average proportional element difference from scaled
masked data subset’’;

Xscal = repeat(t(sqrt(vecdiag(covXs))) ,nrecsu,1);
Xcmppr = Xdiffpr/Xscal;
normX = Xcmppr[:]/sqrt(2);

print normX ’’Average standardized difference from scaled masked
data subset’’;

meandifp = abs(meanXs - menZprsc);

meancmpr = meandifp/abs(meanXs) ;

normmeap = meancmprl[:];

print normmeap ’’Average proportional mean difference from scaled
masked data subset’’;

vardiffp = abs(varXs - varZprsc);

varcmppr = vardiffp/abs(varXs);

normvarp = varcmpprl[:];

print normvarp ’’Average proportional variance difference from
scaled masked data subset’’;

normcovp = 0;
do i =1 to nvar;

85

do j = i to nvar;
normcovp = normcovp + abs(covXs[i,j] - covZprscli,jl)/abs(covXs[i,jl);
end;
end;
NOYMCOVp = NOrmcovp/ncors;

print normcovp ’’Average proportional covariance difference from
scaled masked data subset’’;

normcorp = 0;
do i =1 to nvar;
do j = (i+1) to nvar;
normcorp = normcorp + abs(corXs[i,j]l - corZprscli,jl);
end;
end;
NOrmcorp = Normcorp/ncors;

print normcorp ’’Average correlation difference from scaled
masked data subset’’;

quit;

run;

86

